Probing Metal-Support Interactions under Oxidizing and Reducing Conditions: In Situ Raman and Infrared Spectroscopic and Scanning Transmission Electron Microscopic-X-ray Energy-Dispersive Spectroscopic Investigation of Supported Platinum Catalysts

Wenyong Lin,[†] A. A. Herzing,[‡] C. J. Kiely,[‡] and I. E. Wachs*,[†]

Operando Molecular Spectroscopy and Catalysis Laboratory, Chemical Engineering Department, Center for Advanced Materials and Nanocharacterization, and Materials Science & Engineering Department, Lehigh University, Bethlehem, Pennsylvania 18015

Received: November 4, 2007; In Final Form: January 16, 2008

The strength of PtOx-support and Pt-support interactions was investigated for supported PtOx/SiO₂, PtOx/Al₂O₃, and PtOx/CeO₂ catalysts with time-resolved in situ Raman/IR spectroscopy and scanning transmission electron microscopy (STEM). Raman spectroscopy (and STEM-X-ray energy-dispersive spectoscopy, XEDS) was able to distinguish between crystalline PtO₂ (4–7 nm), amorphous PtO₂ (~1–1.5 nm), and surface PtOx species (<1 nm). The domain size of the supported PtOx phase decreased (SiO₂ > Al₂O₃ > CeO₂) as the PtOx-support interaction increased (CeO₂ > Al₂O₃ > SiO₂). The strength of the PtOx-support interaction also controlled the reducibility of the supported PtOx phase, with the strongly interacting PtOx/CeO₂ system being the most difficult to reduce. Corresponding IR spectroscopy showed that the CeO₂ support also became reduced by H-spillover during the reduction treatment. Furthermore, Pt redispersion is also related to the PtOx-support interaction, and complete redispersion on CeO₂ can be achieved with mild reduction-oxidation treatments. The reduced metallic Pt is reoxidized by bulk lattice oxygen from the CeO₂ support and not gas-phase molecular O₂.

Introduction

Ceria-supported precious and noble metals are attracting much interest due to their unique catalytic properties for demanding reactions related to environmental purifications, fuel-cell applications, and automotive emissions control.^{1,2} In the automotive three-way catalyst, the CeO₂ support functions as an oxygen buffer by releasing oxygen under reducing conditions and storing oxygen under oxidizing conditions.³ Thus, the reduction of NOx and the oxidation of CO and hydrocarbons can be accomplished simultaneously under dynamic automotive cyclic fuel-lean and fuel-rich conditions. Supported Pt/CeO₂ catalysts have also been found to preferentially oxidize trace amounts of CO in a H2rich environment, and this is referred to as PROX (preferential oxidation).^{4,5} It is widely accepted that the unique properties of the supported metal/CeO₂ system stems from the presence of abundant $Ce^{3+}-Ce^{4+}$ coupling within the CeO_2 structure. The Ce³⁺/Ce⁴⁺ ratio undergoes dynamic change responding to its environment, such as fuel-lean and -rich conditions, which makes CeO₂ an oxygen reservoir for the supported precious metals.

Recently, spectroscopic evidence showing that CeO_2 is an active support for precious metals has been achieved. The CeO_2 support was found to spontaneously oxidize its supported noble metals. Smirnov and Graham⁶ have used XPS spectroscopy to monitor the oxidation state of Pd dispersed on a CeO_2 – ZrO_2

film. The supported Pd was observed to become oxidized by the ceria support in the absence of gas-phase oxygen, thus giving direct spectroscopic evidence for the transfer of oxygen from the CeO₂ to its supported noble metal. This result is in parallel with a previous temperature-programmed desorption study, in which oxygen migration from the CeO₂ support to the supported Rh metal was evidenced by the observation of a substantial amount of CO₂ following heating up the preadsorbed CO on Rh sites that were dispersed on the CeO₂ substrate.⁷ It is worth noting, however, that the above examples^{6,7} were based on model systems in which precious metals were dispersed on the CeO₂ or CeO₂–ZrO₂ films.

In practical applications, CeO₂ powder may undergo significant textural changes under reaction conditions. For examples, CeO₂ undergoes severe surface area loss under reducing conditions and this also leads to agglomeration of the supported precious metals.⁸ Another result of the precious metal–CeO₂ interaction was found to be geometric decoration of the precious metal by the CeO₂ support, a phenomenon known as SMSI (strong metal–support interaction) that was initially observed in the TiO₂-supported noble metal systems.⁹ A TEM study has shown that the surface of Pt was progressively covered by the CeO₂ support when the catalyst is subjected to H₂ treatment at certain temperatures (>500 °C). This geometric decoration consequently leads to severe decrease of the Pt chemisorption capacity.^{9–11}

Various characterization techniques have been employed to investigate the metal-support interaction in the precious metal/ CeO₂ catalytic system, among which transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) are the

^{*} Corresponding author phone: (610) 758-4274; fax: (610) 758-5057; e-mail: iew0@lehigh.edu.

[†] Operando Molecular Spectroscopy and Catalysis Laboratory and Chemical Engineering Department.

[‡] Center for Advanced Materials and Nanocharacterization and Materials Science & Engineering Department.

most popular ones. Recently, Raman spectroscopy has been demonstrated as an effective and easy tool to probe the state of the supported noble metals Pd, Pt, and Rh.¹²⁻¹⁸ Special attention was paid to the metal-oxygen vibration signals for their qualitative value in reporting the oxidation state of noble metals, which is a very important factor in revealing the catalytic mechanism. Raman signals of Pt-O, Pd-O, and Rh-O vibrations of ceria-supported precious metal oxides were first reported by Murrell et al.¹⁷ Brogan and Dines¹⁶ performed a systematic Raman study of the supported Pt/Al₂O₃-CeO₂ catalyst prepared by the sol-gel method. Distinct Raman signals at 550 and 690 cm⁻¹ were assigned to Pt-O-Ce and Pt-O vibrations, respectively. The Pt-O-Ce and Pt-O band could be eliminated by H₂ treatments. Studies of the behaviors of these vibrations under different environments revealed the strong interaction between Pt and the CeO₂ support. Interestingly, Pt supported on Al₂O₃ exhibits a broad Raman band at 600 cm⁻¹ under an oxygen environment that is also removed by a reducing environment.¹⁸ While the Raman signals of precious metal oxides have been used to probe oxidation and reduction of the noble metals, prior investigations have not examined the simultaneous redox behavior of the precious metal and the oxide support. This dynamic correlation is obviously highly desirable in order to establish the mutual interactions between the precious metals and their supports.

The objective of this investigation is to establish direct spectroscopic evidence for precious metal—support interactions in the Pt/CeO₂ catalytic system by simultaneously combining time-resolved in situ Raman and IR spectroscopic measurements¹⁹ during redox treatments. Thus, both the oxide support and the supported Pt will simultaneously be spectroscopically monitored as a function of reducing and oxidizing conditions as well as a function of time. The size domain of the supported Pt and PtOx nanoparticles (NPs) will be determined by scanning transmission electron spectroscopy (STEM) studies. Comparative studies with supported Pt/SiO₂ and Pt/Al₂O₃ catalytic materials are also undertaken to compare the behavior of Pt supported on CeO₂ with Pt supported on other oxide support materials.

Experimental Section

Catalyst Synthesis. The supported Pt/SiO₂, Pt/Al₂O₃, and Pt/CeO₂ catalysts were prepared by the incipient wetness impregnation method with an aqueous solution of Pt(NH₂)₄-(NO₃)₂ (Aldrich, Pt \geq 50%) onto SiO₂ (Cabot, Cab-O-Sil EH5, 330 m²/g), Al₂O₃ (Engelhard/BASF, H5433C, 178 m²/g), and CeO₂ (Rhodia, lot 04004401 AC 5, 200 m²/g). The oxide supports were calcined in air at 500 °C for 3 h prior to impregnation. The freshly impregnated samples were kept under ambient conditions for 24 h followed by calcination at 500 °C in air for 3 h at a ramping rate of 1 °C/min from room temperature to 500 °C.

In Situ Raman and IR Spectroscopy. The vibrational spectroscopic measurements were performed with a Horiba-Jobin Yvon LabRam-IR system that combined Raman and FT-IR with a confocal microscope. The Raman laser beam and the IR source beam were concentrically aligned so that both spectra could be collected from the same sample spot (the spot size of IR is typically larger than the spot size of Raman). The LabRam-IR system could also be continuously switched between the Raman and IR collection modes so that parallel time-resolved Raman and IR spectra could be collected.

The Raman spectra were collected with a single-stage monochromator (LabRam-HR) with a focal length of 800 mm

and 900 grooves/mm grating (Horiba Jobin Yvon, 53011140HR), and a LN₂ cooled CCD detector (Horiba Jobin Yvon-CCD 3000 with 2048 × 13.5 μ m² pixels). The Raman excitation was achieved with a 532 nm Nd-YAG laser. A 50× objective (Olympus BX-30) was employed for both focusing the laser beam on the sample and collection of the scattered photons. The Rayleigh scattering component was blocked by a notch filter (Kaiser Super Nothch) having ~100 cm⁻¹ cutoff. The chosen operating conditions (800 mm focal length, 200 μ m confocal hole size, and 900 grooves/mm grating) provided a Raman spectral resolution of ~2 cm⁻¹. Typical Raman spectral collection times were 100 s (20 s/scan and 5 scans/spectrum). The Raman spectra were calibrated by using the Hg 546.07 nm line and the Si 520.07 cm⁻¹ shift.

FT-IR measurements were performed with a Sense IR system attached at the top of the Horina-Jobin Yvon LabRam HR system. The FT-IR spectrometer is equipped with a LN₂-cooled mercury–cadmium–telluride (MCT) detector that has a spectral resolution of 4 cm⁻¹. FT-IR spectra were collected in the diffuse reflectance mode by use of a total-reflecting objective (Gassegrain/Schwarzschild type). FT-IR spectral collection time was typically 36 s (0.3 s/scan and 120 scans). The absorbance spectrum was calculated as

absorbance_{sample} =
$$-\log_{10} \left(\frac{\text{reflection}_{\text{sample}}}{\text{reflection}_{\text{KCL}}} \right)$$

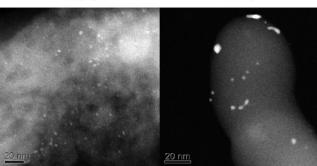
The KCl spectrum was measured at 200 °C under flowing Ar in the environmental cell described below.

For the in situ Raman and IR spectroscopic studies, about 20 mg of the catalyst sample in loose powder form was placed at the center of the heating stage of an environmental cell (Linkam THMS 600) with the total gas flow maintained at 30 cm^3/min . The environmental cell was equipped with a CaF₂ window (International Crystal Laboratories) to allow simultaneous Raman and IR spectroscopic measurements. The oxidizing and reducing environments correspond to 3% O2 and 3% H2 balanced by Ar, respectively. During heating and cooling, the sample temperature was linearly programmed at 15 °C/min with an electronic controller and independently calibrated by use of a separate thermal couple embedded in the catalyst sample. At each temperature, 30 min was typically employed for the catalyst sample to reach equilibration in the different environments. Methanol chemisorption IR was used to probe the surface of the freshly calcined and reduced (300 °C) Pt/CeO₂ sample. Thus the freshly calcined samples were first heated at 400 °C for 30 min in flowing O₂ or H₂ (to reduce the sample) and cooled down to 120 °C in O2 and H2, respectively. The oxidized and reduced samples were then exposed to methanol gas, obtained by bubbling Ar through methanol liquid. The flow rate of Ar was regulated to allow a CH₃OH flow of 4 mmol/min (gas). IR spectra were taken after 20 min of methanol follow and a subsequent 10 min of pure Ar flow. During the combined timeresolved Raman/IR measurements, the total-reflecting objective (Gas-segrain/Schwarzschild type) was employed for both Raman and IR spectroscopic measurements to save time. (It was found the lens embedded in the IR objective can be used for Raman measurement.) For these time-resolved measurements, the Raman and IR spectra were each recorded in 20 s (1 scan for Raman and 66 scans for IR), which corresponds to a time resolution of 40 s per complete Raman/IR cycle.

Isotopic ¹⁸O₂ **Experiments.** During isotopic ¹⁸O₂ experiments with the supported Pt/CeO₂ catalyst at 300 °C, special care was taken to remove any residual ¹⁶O₂ that may exist in the dead

volume of the switching valve. Thus, ${}^{16}O_2$ was first replaced by ${}^{18}O_2$ (2% balanced by He and Ar mixture at 30 cm³/min) at 300 °C after 20 min treatment by ${}^{16}O_2$, allowing ${}^{18}O_2$ to flow for 10 min before the initial reduction by H₂ at the same temperature. (The first 10 min of ${}^{18}O_2$ treatment did not induce the isotopic shift of the Pt–O vibration.) The catalyst was then treated with H₂ (3% balanced by Ar) flow. After 30 min of H₂ treatment at 300 °C, the feeding gas was switched to ${}^{18}O_2$ and held for an additional 30 min.

ScanningTransmission Electron Microscopy Analysis. Samples of the three catalysts (Pt supported on SiO₂, CeO₂, and Al₂O₃) were prepared for STEM characterization by by suspending them in high-purity ethanol and allowing a drop of the suspension to dry on a lacey carbon film supported by a 300-mesh Cu TEM grid. High-angle annular dark-field (HAADF) imaging was carried out on a JEOL 2200FS FEG-STEM operating at 200 keV and equipped with a CEOS sphericalaberration corrector.²⁰ Subsequent X-ray energy-dispersive spectroscopy (XEDS) analysis was carried out on a VG HB603 FEG-STEM operating at 300 keV and equipped with a Nion Inc. spherical aberration corrector.^{21,22} STEM-XEDS spectrum images were collected on an Oxford Instruments XEDS system with a pixel resolution of 128×128 and an acquisition time of 200 ms/pixel. After the data acquisition, multivariate statistical analysis (MSA) of the XEDS data was performed with MSAX-ESP v0.11 (M. Watanabe, 2005). MSA is a set of processing techniques that analyzes the spectrum image data cube as a whole and identifies the various components within it that vary independently, and this allows the operator to significantly reduce the inherent background noise from the processed data.^{23,24} Watanabe and co-workers²⁵ have shown that the application of MSA to STEM-XEDS spectrum imaging can significantly improve the quality and interpretability of the acquired data.


Results

STEM-HAADF Imaging and XEDS Analysis. Representative HAADF images of the three supported Pt catalysts are shown in Figure 1 in their oxidized state. The large atomic-number (*Z*) contrast produced by the HAADF imaging technique clearly reveals the Pt species against the SiO₂ and Al₂O₃ supports. In the Al₂O₃-supported catalyst, the particles ranged in size from 0.5 to 3 nm with the dominant size being 1.5 nm. The size of the SiO₂-based catalyst was found to exhibit a bimodal Pt particle size distribution of 1–1.5 and 4–7 nm.

In comparison, it is difficult to discern any discrete Pt particles in the HAADF images from the CeO₂-supported catalyst (Figure 1). Interpretation of the images from this catalyst was complicated by the high atomic number of the Ce atoms in the underlying CeO₂ support ($Z^{Ce} = 54$). Since the contrast in HAADF images is proportional to Z^2 , the contribution to the overall image contrast from the CeO₂ support is large and, consequently, the supported Pt species ($Z^{Pt} = 78$) do not stand out as strikingly in these images as in those acquired from the lighter Al₂O₃ and SiO₂ supports (where $Z^{AI} = 13$ and $Z^{Si} = 14$, respectively).

STEM-XEDS spectrum imaging was carried out on the supported Pt/CeO₂ sample in order to accurately determine the nature of the Pt dispersion on the CeO₂ support. The resulting elemental maps, shown in Figure 2, do not reveal any discrete Pt particles. Instead, the Pt L α signal originates from an area that is spatially coincident with that of the Ce L α and O K α signals. The veracity of these data is confirmed by the summed XEDS spectrum (also Figure 2) extracted from the area of the

Pt/SiO₂

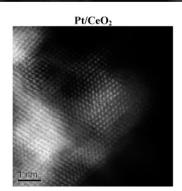
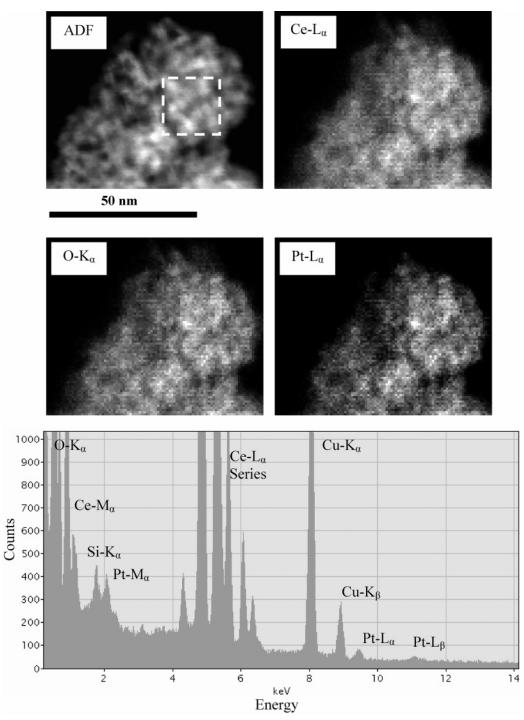



Figure 1. STEM-HAADF images of supported Pt/Al_2O_3 , Pt/SiO_2 , and Pt/CeO_2 catalysts.

sample indicated by the dashed line in the ADF image. The Pt M α , L α , and L β peaks are clearly present in excess of the X-ray continuum background. Thus, these data confirms that the Pt is very highly dispersed over the entire CeO₂ surface.

Raman Spectra under Ambient Conditions. The Raman spectra of the freshly calcined supported Pt/SiO₂, Pt/Al₂O₃, and Pt/CeO₂ catalysts and the crystalline PtO₂ reference under ambient conditions are presented in Figure 3. The crystalline PtO₂ reference Raman spectrum exhibits two sharp bands at 504 and 545 cm⁻¹, which have been assigned to $A_{1g} + E_g$ vibrational modes.²⁶ According to the literature, amorphous PtO₂ gives rise to a band at 610 cm⁻¹,²⁶ crystalline PtO possesses Raman features at 438 (Eg) and 657 cm⁻¹ (B_{1g});²⁶ and metallic Pt is not Raman-active. Other bulk platinum oxide phases formed under high-temperature and high-pressure conditions also display distinct Raman features in the <800 cm⁻¹ region.²⁶

For the supported Pt/Al₂O₃ catalyst, only a broad Raman band centered at 610 cm⁻¹ is present from PtOx since the γ -alumina support used in this study does not give rise to Raman-active vibrations.²⁷ The 610 cm⁻¹ vibration is consistent with the vibration of amorphous PtO₂ nanoparticles (~1.5 nm) as suggested by the TEM image in Figure 1. The Raman spectrum of the supported Pt/SiO₂ catalyst displays bands at 450, 504, 545, 610, 790, and 1100 cm⁻¹. The bands at 450, 790, and 1100 cm⁻¹ are vibrations from the SiO₂ support²⁸ and are not affected by H₂ reduction (see in situ Raman results below). The sharp vibrations at 504 and 545 cm⁻¹ correspond to crystalline PtO₂ particles,²⁶ which are easily reduced by H₂ (see results below). The broad signal at 610 cm⁻¹ contains contributions from the SiO₂ support and amorphous PtO₂ vibrations. The amorphous PtO₂ band can be easily reduced with H₂ (see in situ Raman results below). The presence of two types of supported PtO₂ NPs on SiO₂, crystalline, and amorphous PtO₂ phases is in good agreement with the TEM results, which show dual particle size distribution. The amorphous PtO₂ NPs on SiO₂ (Raman band at 610 cm⁻¹) are probably $\sim 1.0-1.5$ nm, as imaged in Figure

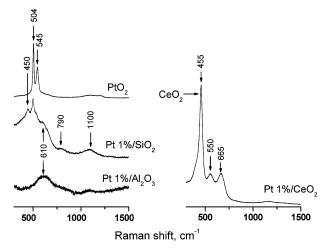


Figure 2. STEM-ADF image of the supported Pt/CeO₂ catalyst and the corresponding Ce L α , O K α , and Pt L α XEDS maps after background subtraction, showing no discrete Pt particles in this sample. The XEDS spectrum extracted from the area of the sample indicated by the dashed box in the ADF image is also presented. The presence of Pt is clearly indicated by the Pt L α and L β peaks. The Si K α and Cu K α , β peaks are also visible in the spectrum; these arise from internal fluorescence of the Si(Li) XEDS detector and the Cu TEM grid, respectively.

1, and the crystalline PtO_2 particles (Raman band 504 and 545 cm^{-1}) are probably 4–7 nm in size, as imaged in Figure 1.

The calcined supported Pt/CeO₂ catalyst sample exhibits Raman bands at 450, 550, and 665 cm⁻¹. The strong 450 cm⁻¹ vibration is associated with the *F*2 *g* symmetry of the crystalline CeO₂ support.²⁹ The Raman features at 550 and 665 cm⁻¹ are from the supported PtOx phase and disappear upon reduction and reappear upon oxidation (see in situ Raman studies below). These Raman bands are associated with a highly dispersed surface PtOx phase on CeO₂¹⁷ and are tentatively assigned to the bridging Pt–O–Ce vibration (550 cm⁻¹) and Pt–O vibration (665 cm⁻¹).¹⁶ The band at 400 cm⁻¹ is assigned to defect sites³⁰ on CeO_2 induced by coordination of the PtOx to the ceria support. The above findings demonstrate that the state of supported PtOx phase after calcination strongly depends on the specific oxide support.

In Situ Raman and IR Spectra Acquired under H_2 Reducing Conditions. The Raman spectra of the supported Pt catalysts and bulk PtO₂ at elevated temperatures and under H_2 reducing conditions are presented in Figure 4. Prior to exposure to the reducing H_2/Ar environment, the bulk PtO₂ and supported PtOx catalysts were initially calcined in flowing O₂/Ar at 350 °C and subsequently cooled down to 50 °C. Bulk PtO₂ was readily reduced to metallic Pt at 50 °C by exposure to the

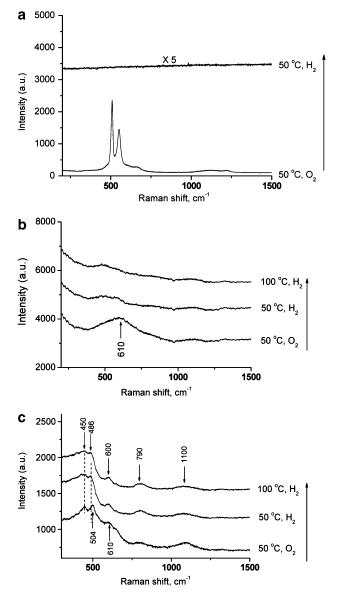


Figure 3. Raman spectra of supported Pt/SiO₂, Pt/Al₂O₃, and Pt/CeO₂ measured under ambient conditions. A spectrum of crystalline α -PtO₂ is shown for comparison. Insets display corresponding XPS spectra of supported Pt/CeO₂.

reducing environment as shown in Figure 4a. The in situ Raman spectra of the supported PtOx catalysts at 50 °C reveal that the supported PtOx phases are oxidized and unchanged from those present under ambient conditions (see Figure 3). Switching from the oxidizing to the reducing environment at 50 °C results in reduction of the supported amorphous PtO₂ phases present in the supported Pt/Al₂O₃ catalyst and the amorphous and crystal-line PtO₂ phase present in the supported Pt/SiO₂ catalyst systems (see Figure 4b,c). The remaining Raman features at 450, 486, and 610 cm⁻¹ in the supported Pt/SiO₂ spectrum are from the SiO₂ support.²⁹ In contrast to these systems containing bulk PtO₂ phases, the supported PtOx phase on CeO₂ is much more difficult to reduce with H₂ and reduction initiates at 200 °C as shown in Figure 5a. Clearly, the PtOx-CeO₂ interaction is very different than the PtOx-SiO₂ and PtOx-Al₂O₃ interactions.

The corresponding in situ IR spectra are focused on the surface OH stretching region of the supported PtOx catalysts. For the supported Pt/SiO₂ and Pt/Al₂O₃ catalysts, the IR bands in the surface OH region are not perturbed by the reduction treatment since both of these oxide supports are not reducible (spectra not shown). The IR bands in the surface OH region for the supported Pt/CeO₂ catalysts, however, do undergo changes during reduction as indicated in Figure 5b. The IR bands of CeO₂ at 3695 and 3655 cm⁻¹ are assigned to type I and II hydroxyl groups, designated as OH(I) and OH(II), respectively. The OH(I) vibration originates from isolated surface hydroxyl groups on the CeO₂ surface, and the OH (II) band has been assigned to bridging surface hydroxyl groups.³¹ Both type I and II surface hydroxyls are present in the 50-200 °C temperature range under reducing conditions for the supported Pt/CeO₂ catalyst. At 300 °C, however, the IR band associated with the isolated surface OH(I), at 3695 cm⁻¹, is not present due to its removal while the surface OH(II) band shifts to lower wavenumber. Exposure of the Pt-free CeO2 support to the same reducing conditions, however, does not cause reduction of the surface hydroxyls (see Figure 5c). This suggests that depletion of surface OH(I) hydroxyls is induced by H₂ spillover from the metallic Pt. Thus, the IR signals of the surface hydroxyls can be thought of as in situ probes for the oxidation state of the CeO₂ support. The present findings for the reduction of supported Pt/CeO₂, Pt/SiO₂, Pt/Al₂O₃, and CeO₂ are in excellent agreement with earlier H_2 -TPR studies reported in the literature.^{32–36}

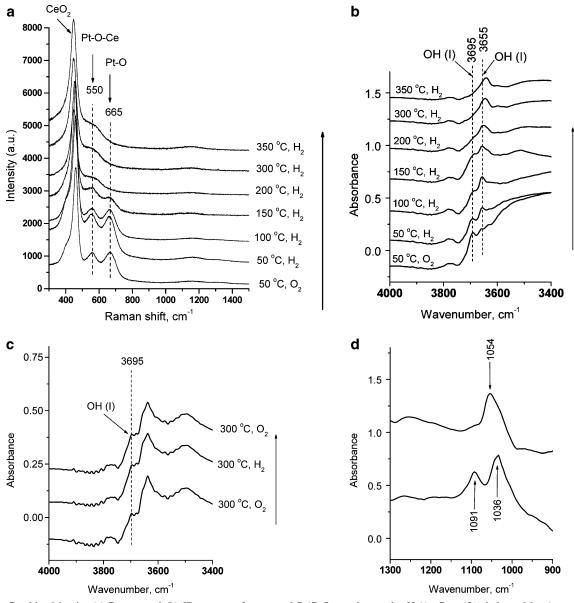
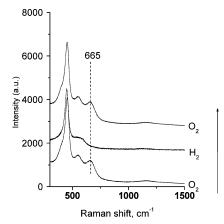

The above conclusions were also chemically probed via in situ CH_3OH chemisorption IR studies because the C-O

Figure 4. In situ Raman spectra of (a) α -PtO₂, (b) supported Pt/Al₂O₃, and (c) supported Pt/SiO₂ samples under H₂/Ar flow (3% balanced by Ar, total flow 30 cm³/min) at elevated temperatures. The catalysts were first heated in O₂/Ar flow at 350 °C for 30 min followed by cooling down to 50 °C in O₂/Ar flow and subsequent exposure to H₂/Ar flow at elevated temperatures.

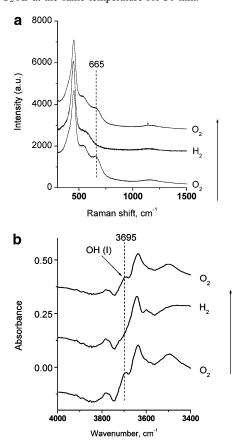
vibration of the surface methoxy group, CH_3O^* , is known to be sensitive to the surface oxidation state of CeO_2 .³¹ The CH_3 -OH IR spectra of freshly calcined and reduced Pt/CeO₂ following exposure of CH₃OH/He at 150 °C are shown in Figure 5d. The IR bands at 1091 and 1036 cm⁻¹ have been assigned to the surface methoxy C–O stretching vibrations at sites I and II, respectively.³¹ The IR spectrum of the calcined PtOx/CeO₂ sample displays the C–O vibrations of both the surface methoxy(I) and (II) groups, but only the surface methoxy(II) C–O IR vibration is present in the spectrum after H₂ reduction. The CH₃OH IR measurements of the supported Pt/CeO₂ catalysts further confirm that the surface OH(I) sites are removed upon H₂ reduction at elevated temperatures.

In Situ Raman and IR Spectroscopy during Reoxidation and Rereduction. Reoxidation of the reduced bulk Pt metallic powder at elevated temperatures does not re-form crystalline PtO₂ because the bulk PtO₂ phase is thermally unstable at elevated temperature and decomposes to metallic Pt.³⁷ Reoxidation of the supported Pt/SiO₂ catalyst after reduction at

Figure 5. Combined in situ (a) Raman and (b) IR spectra of supported Pt/CeO_2 catalyst under H_2/Ar flow (3% balanced by Ar, total flow 30 cm³/min) at elevated temperatures. In situ IR spectra of (c) CeO₂ support under flowing cyclic O_2-H_2 treatments at 300 °C and (d) supported Pt/CeO_2 adsorbing CH₃OH at 120 °C are shown as references.


200 °C does not regenerate the initial crystalline $PtO_2 NPs$ (not shown). Reoxidation of the supported Pt/Al_2O_3 catalyst after reduction at 200 °C gives rise to only a trace of amorphous $PtO_2 NPs$ (not shown). The corresponding in situ IR spectra do not indicate any detectable changes in the surface OH region of the Al_2O_3 and SiO₂ supports (not shown).

In contrast, reoxidation of the 200 °C reduced supported Pt/ CeO₂ catalyst results in almost complete regeneration of the supported PtOx phase on CeO₂ as shown in Figure 6. Reoxidation of the 300 °C reduced supported Pt/CeO₂ catalyst, however, does not result in complete regeneration of the supported PtOx phase as shown in Figure 7a. The corresponding IR spectra of the surface OH region, as shown in Figure 7b, reveal that the surface OH region, as shown in Figure 7b, reveal that the surface OH(I) vibration at 3695 cm⁻¹ is absent under reducing conditions and present under oxidizing conditions. Thus, the metal-support interaction of the supported Pt/ CeO₂ catalyst system gives rise to reversible reductionoxidation cycles at modest temperatures (200 °C) but incomplete redispersion at the higher temperature of 300 °C.


The degree of oxidative regeneration of the supported Pt/ CeO₂ catalyst system was further probed by a second reduction treatment in H₂/Ar. The 200 °C reduced and reoxidized supported Pt/CeO₂ catalyst was found to exactly reproduce the initial reduction behavior shown in Figure 5a,b, which indicates the complete reversibility of the reduction—oxidation processes at 200 °C. The 300 °C reduced and reoxidized supported Pt/ CeO₂ catalyst, however, was found to readily reduce at 50 °C as indicated by in situ Raman spectroscopy (see Figure 8) and the surface OH(I) sites were almost completely reduced at 150 °C (not shown). Consequently, the presence of a small fraction of metallic Pt NPs, due to incomplete redispersion at 300 °C, is sufficient to cause hydrogen spillover and accelerate the reduction of the dispersed PtOx phase and the CeO₂ support at much milder temperatures.

Furthermore, surface peroxo, O_2^{2-} (825 cm⁻¹), and superoxo, O_2^{-} (1125 cm⁻¹), species are not present in the in situ Raman and IR spectra during the present reduction—reoxidation treatments.³⁰

Time-Resolved in Situ Raman and IR Spectroscopic Study of Reduction and Reoxidation of Supported Pt/CeO₂. Timeresolved in situ Raman and IR spectroscopic measurements, at 20 s intervals for each, were also undertaken to obtain additional

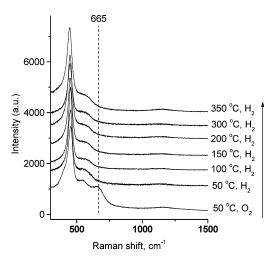


Figure 6. In situ Raman spectroscopic monitoring of reduction and subsequent reoxidation of supported Pt/CeO₂ catalyst at 200 °C. The catalyst was first reduced by exposure to flowing H₂/Ar at 200 °C for 30 min. Reoxidation of the catalyst was carried out by switching to flowing O₂/Ar at the same temperature for 30 min.

Figure 7. In situ (a) Raman and (b) IR spectroscopic monitoring of reduction and reoxidation of supported Pt/CeO₂ catalyst at 300 °C. The catalyst was first reduced by exposure to flowing H_2/Ar at 300 °C for 30 min. Reoxidation of the catalyst was carried out by switching to flowing O₂/Ar at the same temperature for 30 min.

insights into the reduction and reoxidation processes of the supported Pt/CeO₂ catalyst at 300 °C. The PtOx vibration at 665 cm⁻¹ was monitored with Raman and the CeO₂ surface OH(I) vibration at 3695 cm⁻¹ was monitored with IR at 300 °C. The normalized intensities of the PtOx and surface OH-(I) vibrations are plotted as a function of time during reduction and reoxidation in Figure 9 panels a and b, respectively. During the initial reduction in H₂/Ar, the PtOx vibration decreases slightly faster than the CeO₂ surface OH(I) vibration. This trend suggests that the reduction of the supported PtOx phase precedes that of the CeO₂ support and is most likely related to H₂ spillover

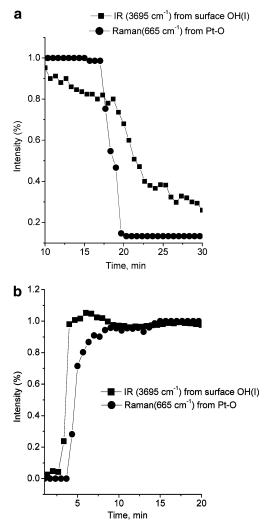


Figure 8. In situ Raman spectroscopic monitoring of the secondary reduction of the supported Pt/CeO₂ catalyst. The catalyst was first reduced and reoxidized at 300 °C (refer to Figure 7 for detail) and cooled down to 50 °C in O₂/Ar. The secondary reduction was carried out by switching to H₂/Ar flow at elevated temperatures with 30 min duration at each temperature.

from the reduced Pt sites. Reoxidation of the reduced catalyst reveals that the CeO₂ surface OH(I) vibration is restored before reoxidation of the supported metallic Pt phase. This trend suggests that oxidation of the ceria support precedes oxidation of the supported metallic Pt phase and that Pt redispersion may require the presence of CeO₂ surface OH(I) sites. In summary, the time-resolved reduction—reoxidation cycles reveal the complex dynamic interplay between the supported Pt phase and the CeO₂ support in different reactive environments.

In Situ Raman and IR Spectroscopic Measurements during Reoxidation with Isotopic Molecular ¹⁸O₂. Additional insights into the reoxidation process were obtained by employing $^{18}O_2$ as the oxidizing agent for the reduced supported Pt/CeO₂ catalyst. Raman spectra of the freshly calcined supported Pt/ CeO2 catalyst are shown under consecutive ¹⁶O2/Ar, H2/Ar, and ¹⁸O₂/Ar environments at 200 °C in Figure 10. The behavior of the supported PtOx Raman band at 665 cm⁻¹ follows the behavior already seen for reduction and reoxidation in Figure 6. However, employing ¹⁸O₂ to reoxidize the reduced supported Pt phase did not lead to Pt18Ox formation since Pt18Ox is expected to vibrate ${\sim}20{-}30~\text{cm}^{-1}$ lower than $Pt^{16}\text{Ox}.^{38}$ The parallel in situ IR data (not shown), also indicate restoration of the CeO₂ surface ¹⁶OH(I) sites rather than surface ¹⁸OH(I) sites. These isotopic oxygen experiments demonstrate that reoxidation of the reduced supported Pt phase and the surface OH(I) sites on CeO₂ proceeds with ¹⁶O from the CeO₂ support lattice and not from gas-phase molecular ¹⁸O₂. The role of gas-phase molecular O2 is only to reoxidize the oxygen vacancies in the CeO₂ support (i.e., a Mars-van Krevelen mechanism).

The oxygen transfer characteristics of the supported Pt/CeO₂ catalyst were further investigated in a H₂-rich environment, H₂/O₂ ~50, with isotopically labeled ¹⁸O₂. Under such net reducing conditions at 200 °C, the PtOx phase on CeO₂ is completely reduced as shown by the absence of the PtOx Raman band at 665 cm⁻¹ in Figure 11. Upon cooling down to 50 °C in the same net reducing gas mixture, the Pt¹⁶Ox Raman band at 665 cm⁻¹ reappears without the presence of Pt¹⁸Ox. In the absence of a trace of gas-phase molecular ¹⁸O₂, however, the PtOx Raman band does not regenerate in the flowing H₂/Ar environment at 50 °C. The PtOx Raman band at 665 cm⁻¹ also does not regenerate at 50 °C in the H₂/O₂ environment if the

Figure 9. Temporal profile of (a) reduction and (b) reoxidation of supported Pt/CeO_2 at 300 °C as studied by combined time-resolved Raman and IR spectroscopy. The relative intensities of the surface OH-(I) IR signal of CeO_2 at 3695 cm⁻¹ and the supported PtOx Raman signal at 665 cm⁻¹ are plotted as function of time.

supported Pt/CeO₂ catalyst was previously reduced at 300 $^{\circ}$ C, where some metallic Pt NPs are also present on CeO₂.

Discussion

PtOx Interaction with Oxide Supports under Oxidizing Conditions. The STEM-ADF images and Raman spectra clearly reflect the interactions of the supported PtOx phase with the underlying oxide supports. The STEM images reveal that the dimension of supported PtOx NPs is as follows: SiO2 (bimodal distribution of $\sim 1-1.5$ and 4-7 nm) > Al₂O₃ (~ 1.5 nm) > CeO_2 (<0.7 nm). The corresponding Raman spectra provide additional structural insights about the supported PtOx phases with crystalline α -PtO₂ and amorphous PtOx NPs on SiO₂, amorphous PtOx NPs on Al₂O₃, and surface PtOx species on CeO₂. For the supported PtOx/SiO₂ catalyst, the 1-1.5 nm amorphous PtOx NPs correspond to the Raman band at 610 cm⁻¹, and the 4–7 nm α -PtO₂ NPs give rise to the 504 cm⁻¹ Raman band. Thus, the state of the supported PtOx phase is related to the PtOx-support interaction. The Pt densities (grams per square meter) are apparently different on the three supports because of their surface area difference. The fact that SiO₂ support has the relatively largest surface area but contains the largest Pt aggregation further confirms its weak interaction with Pt.

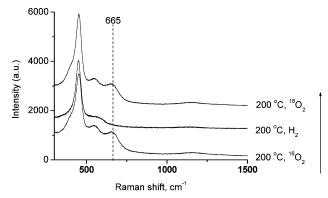
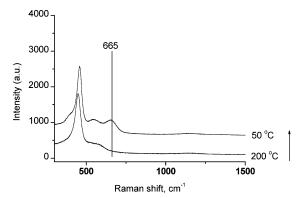



Figure 10. In situ Raman spectra of supported Pt/CeO_2 under sequential ${}^{16}O_2/Ar$, H_2/Ar , and ${}^{18}O/Ar$ environments at 200 °C.

Figure 11. In situ Raman spectroscopy during cooling-down of reduced supported Pt/CeO₂ catalyst in net reducing environments ($H_2/^{18}O_2 = 50$ with a flow of 100 cm³/min in total). The catalyst was alternatively maintained for 10 min at 50 and 200 °C each with ramping and cooling rates of 10 °C/min.

PtOx Interaction with Oxide Supports under Reducing Conditions. The nature of the supported PtOx phase under oxidizing conditions also determines its ease of reduction. The agglomerated amorphous PtOx and α -PtO₂ NPs, as well as bulk α -PtO₂, readily reduce to metallic Pt at 50 °C in a flowing H₂/ Ar stream. The highly dispersed surface PtOx species on CeO₂, however, require much higher reduction temperature for reduction to metallic Pt. Thus, the stronger interaction of PtOx with the CeO₂ support retards reduction of the supported PtOx phase.

In addition, H-spillover from the metallic Pt NPs also reduces the CeO₂ surface by reducing the surface OH(I) sites. Direct spectroscopic observation of this H-spillover phenomenon is provided by the time-resolved in situ Raman/IR spectroscopic measurements, which show that the supported PtOx begins reduction to metallic Pt prior to reduction of the CeO₂ surface OH(I) sites. Furthermore, the reduction of CeO₂ in the absence of Pt normally requires much higher temperatures, closer to 500 °C.

H₂-TPR studies have been previously used to elucidate the PtOx–support interaction in the supported PtOx/CeO₂ catalytic system.^{32–34} The retarded reduction threshold of the surface PtOx species on CeO₂ in comparison with the agglomerated PtOx NPs on Al₂O₃ and SiO₂ has been ascribed to strong electronic interactions between PtOx and the CeO₂ support, with the latter tending to keep the former in the oxidized state and preventing it from agglomerating.³⁹ The present findings also demonstrate that direct Pt–O–Ce bonding is related to the retarded reduction characteristics.

Further increasing the reduction temperature leads to severe textural changes of the CeO_2 support that causes a significant loss of its surface area and the agglomeration of metallic Pt as

a consequence.⁸ This complex scenario is not the subject of this paper. The present study is dedicated to addressing the fundamental aspects of the $PtOx-CeO_2$ interactions under relatively mild conditions when CeO_2 does not undergo sintering.

PtOx-Support Interactions during Reoxidation of Metallic Pt. Reoxidation of reduced Pt NPs supported on the Al₂O₃ and SiO₂ supports does not lead to formation of supported PtOx NPs because the bulk PtO₂ phase is not thermally stable at elevated temperatures.26 Reoxidation of the reduced Pt NPs supported on the CeO₂ support, however, results in redispersion of the metallic Pt NPs as surface PtOx species on CeO₂. The absence of significant residual metallic Pt NPs suggests that the supported platinum on CeO₂ probably consists of much smaller Pt particles than on Al₂O₃ and SiO₂ supports. It has been proposed that there is a strong affinity between the reduced noble metals and oxygen-deficient sites on the surface of metal oxides.⁴⁰ On the CeO₂ surface, elimination of surface OH(I) groups may create the oxygen-deficient sites that help to "immobilize" the metallic Pt during reduction. Such a highly dispersed metallic Pt should be easily reoxidized by subsequent oxidation treatments. In the case of the reduced supported Pt/ Al₂O₃ and Pt/SiO₂ catalyst systems, however, oxygen-deficient sites on the Al₂O₃ and SiO₂ supports are not formed under reducing conditions.

The in situ Raman study also showed that the reoxidation behavior of metallic Pt supported on CeO2 is dependent on the reduction temperature since higher reduction temperatures tend to result in incomplete reoxidation of the supported Pt phase (see Figure 7). This may be related to the dynamic nature of the CeO₂ surface that undergoes severe textural changes during reduction at high temperatures.⁸ Slight local structural rearrangement of CeO₂ at 300 °C may result in the loss of a small fraction of the Pt stabilization sites, which would cause agglomeration of Pt into larger NPs. The aggregated metallic Pt NPs on CeO₂ would minimize the Pt-CeO₂ interaction and significantly lower the reduction threshold of the supported PtOx during the secondary reduction treatment through H-spillover (see Figure 8 and previous discussion). Thus, the presence of some aggregated metallic Pt NPs on CeO₂ facilitates the reduction of the coexisting supported PtOx phase on CeO₂.

Source of Oxygen for Reoxidation of Metallic Pt. The oxygen transfer process represents a unique aspect of CeO2supported metal catalysts. The isotopic molecular ¹⁸O₂ exchange studies (see Figures 10 and 11) clearly demonstrate that metallic Pt is reoxdized to PtOx with lattice oxygen from the CeO₂ support, even at relatively low temperatures. Consequently, the gas-phase molecular O₂ functions only to reoxidize the CeO₂ bulk lattice (Mars-van Krevelen mechanism). The oxidation of metallic Pt by the CeO₂ support rather than gas-phase molecular O_2 is in agreement with the well-known fact that CeO₂ possesses large amounts of structurally stable Ce4+-Ce3+ couples and that the Ce⁴⁺/Ce³⁺ ratio undergoes dynamic changes in response to different composition environments. In the supported Pt/CeO₂ system, the reduced Pt acts as an oxygen atom acceptor, which decreases the Ce^{4+}/Ce^{3+} ratio of the CeO_2 support. In parallel, gaseous molecular O2 gas reacts with reduced Ce³⁺ sites to increase the Ce⁴⁺/Ce³⁺ ratio. This result is also consistent with a literature report on oxygen storage dynamics over supported Pt/CeO2 catalysts in that O2 molecule activation does not directly involve Pt but rather the CeO₂ surface.⁴¹ The isotopic experiments also suggest a very rapid ¹⁸O diffusion process from the reduced CeO₂ surface into the

bulk lattice since the CeO_2 surface sites are overwhelmingly populated by surface ¹⁶O atoms.

Conclusions

The combination of time-resolved in situ Raman/IR spectroscopy and complementary STEM-XEDS-HAADF microscopic studies is a powerful approach for the study of metalsupport interactions. For supported PtOx catalysts, the Raman vibrations can discriminate between crystalline PtO_2 (504 cm⁻¹) and amorphous PtO₂ (610 cm⁻¹) NPs as well as surface PtOx species (665 cm⁻¹), and STEM-XEDS provides information about the NP size distribution. As the Pt-support interaction increases, the supported PtOx phase goes from crystalline PtO₂ to amorphous PtO₂ to surface PtOx species. The extent of the Pt-support interaction also determines the ease of reduction of the supported PtOx phase (SiO₂ ~ Al₂O₃ \gg CeO₂). Redispersion of the metallic supported Pt NPs to the supported PtOx phase also depends on the extent of the Pt-support interaction (CeO₂ > Al₂O₃ \sim SiO₂). For the strongly interacting PtOx/CeO₂ system, the supported metallic Pt NPs can be completely redispersed as surface PtOx species if the reduction is conducted under mild temperatures (~200 °C). For the weakly interacting Pt-Al₂O₃ and Pt-SiO₂ systems, redispersion of the Pt NPs was not achievable under the oxidation conditions investigated. Reduction of Pt also leads to reduction of reducible supports such as CeO₂ due to H-spillover. Reoxidation of metallic Pt NPs on CeO2 was found to occur via bulk lattice oxygen extracted from the CeO₂ support rather than gas-phase molecular ¹⁸O₂, even under mild temperatures.

Acknowledgment. C.J.K. and A.A.H. gratefully acknowledge funding from the NSF Materials Research Science and Engineering Center (NSF-DMR-0079996).

References and Notes

(1) Trovarelli, A.; de Leitenburg, C.; Boaro, M.; Dolcetti, G. Catal. Today **1999**, 50, 353.

(2) Kaspar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50, 285.

(3) Yao, H. C.; Yao, Y. F. Y. J. Catal. 1984, 86, 254.

(4) Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Kröhnert, J.; Steinhauer, B.; Bauer, H.; Toth, L.; Jentoft, F. C.; Knop-Gericke, A.; Paál, Z.; Schlögl, R. J. Catal. **2006**, 237, 1.

(5) Wootsch, A.; Descorme, C.; Duprez, D. J. Catal. 2004, 225, 259.

(6) Smirnov, M. Y.; Graham, G. W. Catal. Lett. 2001, 72, 39.

(7) Gorte R. J., Zafiris G. S. J. Catal. 1993, 139, 561.

(8) Perrichon, V.; Laachir, A.; Abouarnadasse, S.; Touret, O.; Blanchard, G. *Appl. Catal.*, A **1995**, *129*, 69.

(9) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170.

(10) Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; López Cartes, C.; Pérez Omil, J. A.; Pintado, J. M. Catal. Today 2003, 77, 385.

(11) Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Pérez Omil, J. A.; Pintado, J. M. *Catal. Today* **1999**, *50*, 175.

(12) Borodko, Y.; Ager, J. W., III; Marti, G. E.; Song, H.; Niesz, K.; Somorjai, G. A. J. Phys. Chem. B 2005, 109, 17386.

(13) Cornaglia, L. M.; Múnera, J.; Irusta, S.; Lombardo, E. A. Appl. Catal., A 2004, 263, 91.

(14) Graham, G. W.; O' Neill, A. E.; Chen, A. E. Appl. Catal., A 2003, 252, 437.

(15) Uy, D.; Wiegand, K. A.; O' Neill, A. E.; Dearth, M. A.; Weber, W. H. J. Phys. Chem. B 2002, 106, 387.

(16) Brogan, M. S.; Dines, T. J. J. Chem. Soc., Faraday Trans. 1994, 90, 1461.

(17) Murrell, L. L.; Tauster, S. J.; Anderson, D. R. Catal. Automot. Pollut. Control 2, Proc. Int. Symp., 2nd, 1991 [see Stud. Surf. Sci. Catal. 1991, 71], 275.

(18) Uy, D.; O'Neill, A. E.; Li, J.; Watkins, W. L. H. Catal. Lett. 2004, 95, 191.

(19) Bourdon, G. L.; Adar, F.; Moreau, M.; Morel, S.; Reffner, J.; Mamede, A.-S.; Dujardin, C.; Payen, E. *Phys. Chem. Chem. Phys.* **2003**, *5*, 4441.

(20) Watanabe, M.; Ackland, D. W.; Kiely, C. J.; Williams, D. B.; Kanno, M.; Hynes, R.; Sawada, H. *JEOL News* **2006**, *41*, 2.

(21) Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; Von Harrach, S.; Nichols, A. W.; Statham, P. J. J. Microsc. **1994**, *176*, 85.

- (22) Watanabe, M.; Ackland, D. W.; Burrows, A.; Kiely, C. J.; Williams, D. B.; Krivanek, O. L.; Dellby, N.; Murfitt, M. F.; Szilagyi, Z. *Microsc.*
- Microanal. 2006, 12, 515.
 - (23) Trebbia, P.; Bonnet, N. Ultramicroscopy 1990, 34, 165.
 - (24) Trebbia, P.; Mory, C. *Ultramicroscopy* **1990**, *34*, 179.
- (25) Burke, M. G.; Watanabe, M.; Williams, D. B.; Hyde, J. M. J. Mater. Sci. 2006, 41, 4512.
- (26) McBride, J. R.; Graham, G. W.; Peters, C. R.; Weber, W. H. J. Appl. Phys. 1991, 69, 1596.
- (27) Chan, S. S.; Wachs, I. E.; Murrell, L. L.; Dispenziere, N. C. J. Catal. 1985, 92, 1.
- (28) Sharma, S. K.; Cooney, T. F.; Wang, Z.; van der Laan, S. J. Raman Spectrosc. **1997**, 28, 697.
- (29) Gu, X. J. J. Raman Spectrosc. 1996, 27, 83.
- (30) Pushkarev, V. V.; Kovalchuk, V. I.; d'Itri, J. L. J. Phys. Chem. B 2005, 109, 17386.

- (31) Binet, C.; Daturi, M.; Lavalley, J.-C. Catal. Today 1999, 50, 207.
- (32) Takeguchi, T.; Manabe, S.; Kikuchi, R.; Eguchi, K.; Kanazawa, T.; Matsumoto, S.; Ueda, W. *Appl. Catal., A* **2005**, *293*, 91.
 (33) Tiernan, M. J.; Finlayson, O. E. *Appl. Catal., B* **1998**, *19*, 23.
 - (55) Therman, M. J., Filliayson, O. E. Appl. Calal., B **1996**, 19, 25.
- (34) Jacobs, G.; Williams, L.; Graham, U.; Sparks, D.; Davis, B. H. J. Phys. Chem. B 2003, 107, 10398.
- (35) Blaser, U.; Jalett, H. 'P.; Montid. M. Appl. Catal. 1989, 52, 19.
- (36) Parka, S. H.; Tzou, M. S.; Sachtler, W. M. H. Appl. Catal. 1986, 24, 85.
- (37) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999.
- (38) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986.
- (39) Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. *J. Catal.* **2006**, *242*, 103.
 - (40) Vishwanathan, V.; Narayanan, S. Catal. Lett. 1993, 21, 183.
 - (41) Holmgren, A.; Andersson, B. J. Catal. 1998, 178, 14.